Europa poate supraviețui fără gazul rusesc? Răspunsul este că putem supraviețui, atât pe termen scurt, cât și pe termen mediu, doar că procesul nu va fi unul fără “dureri de cap”. Atât structura economică, cât și cea socială din Europa este conectată destul de mult la gazul rusesc. Această dependență este vizibilă mai ales în cazul statelor din estul Europei, cât și în cazul sectorului industrial german.
Totuși, având în vedere situația din Ucraina – dar și comportamentul agresiv rus din ultimii ani (si evidențiat acum) -, este important să înțelegem dacă există o strategie care ne-ar permite să reducem dependența de gazul rusesc pe termen lung, fără a reduce performanța economică sau bunăstarea noastră individuală.
Măsurile enumerate mai jos indică o cale prin care putem efectua tranziția energetică la un sistem regenerabil care ne-ar permite să reducem dependența de importurile de combustibili fosili.
Așadar, aceste măsuri reprezintă soluții pe termen mediu și lung, dar care într-un final ne vor da posibilitatea de a fi cu adevărat independenți energetic.
Primul pas este reprezentat de investițiile în energie regenerabilă produsă de turbine eoliene sau panouri fotovoltaice.
Prin aceasta măsură, am putea înlocui pana la aproximativ 25% din totalul combustibililor folosiți fără să facem nici o alta schimbare în sistemul energetic, practic reducând cheltuielile pentru combustibilii fosili, practic exact ceea ce avem nevoie când importurile devin limitate.
Totuși, exista o anumită limită la care un sistem energetic nu poate accepta mai multă energie intermitenta fără alte schimbări pe partea de utilizare a energiei. Ceea ce ne duce la pasul al doilea.
Încălzirea imobilelor la nivelul Uniunii Europene este activitatea cu cel mai mare consum de energie. Aproximativ 50% din combustibilii utilizați anual sunt destinați încălzirii imobilelor prin soluții ineficiente și poluatoare, cum ar fi centralele individuale pe gaz, lemn, cărbune sau chiar petrol, notează dr. Andrei David Korberg pentru Infoclima.
Pentru a crește eficiența este nevoie de 2 tehnologii:
Deși utilizate de multe decenii chiar și-n România, dar unde au ajuns într-un grad avansat de degradare, sistemele de termoficare sunt extrem de utile pentru a recicla căldură care altfel s-ar pierde: din industrie, centre de date, energia geotermală, sau căldura reziduală din producerea electricității în centralele termice. De asemenea pot funcționa eficient și flexibil împreună cu energia regenerabilă.
Un astfel de sistem, ca acela ilustrat în figura 2 poate:
Un exemplu elocvent de reciclare a căldurii este legat de centralele de producere a energiei electrice. În procesul de producere al electricității se eliberează cantități enorme de căldură.
Se estimează că, anual, în Europa se pierde mai multă căldură decât cererea cumulată de căldură. Din motive practice – de exemplu locul unde e produsă -, nu toată poate fi utilizată, dar există foarte multe cazuri unde aceasta poate fi captată.
O centrală de producere a energiei electrice devine centrală de cogenerare și poate trimite căldura către consumatori printr-un sistem de termoficare. Practic, aceasta elimină necesitatea folosirii a încă unui rând de combustibili destinați doar încălzirii imobilelor.
Pentru a integra mai multă energie regenerabilă intermitentă avem nevoie de soluții de transformare a energiei electrice în energie termică (soluții numite Power-to-Heat). Putem face asta cu o eficiență ridicată folosind pompe de căldura în sistemele de termoficare. O pompă de căldură transferă energia latentă dintr-un mediu – apa menajeră, râuri, lacuri, surse industriale sau geotermale -, folosind electricitate, către rețelele de distribuție a agentului termic la o eficiență de 300% sau chiar mai mult.
O centrală de cogenerare poate atinge o eficiență maximă de 85%, iar un boiler pe combustibil de 90%. Aceste pompe de căldură pot, practic, stoca energia electrică în energie termică, fie pentru uz imediat, fie pentru stocare și uz ulterior.
Există și pompele de căldură de mici dimensiuni care funcționează pe același principiu și pot fi folosite în locațiile extraurbane, acolo unde sistemele de termoficare nu sunt fezabile.
Vehiculele electrice sunt promovate ca soluții de reducere a emisiilor de carbon și a poluării. Acestea pot fi o parte integrantă a sistemul energetic, nu doar cel de transport. Asta pentru că – prin electrificarea transportului – putem integra și mai multă energie regenerabilă intermitentă înlocuind benzina sau motorina în motoarele pe combustie internă.
Un alt avantaj al vehiculelor electrice este eficiența ridicată, de aproximativ 4-5 mai mare decât al unui vehicul pe combustie internă, ceea ce se reflectă în reduceri semnificative de combustibil fosil. Iar cea mare parte a transportului poate fi electrificată, începând de la autovehiculele personale, la transportul de mic tonaj (camionete, furgonete), la o parte din transportul de mare tonaj (camioane, autobuze) până la liniile de cale ferată.
În cadrul acestui pas se pot menționa și soluțiile de creștere a flexibilității sistemului energetic, prin operarea unor consumatori care pot consuma energie la ore în afara cererii maxime, sau când există un surplus în rețea, cum ar fi o parte din aparatura electrocasnică sau câteva echipamente industriale. Efectul lor este benefic, deși nu pot fi soluții de sine stătătoare.
Rămân, totuși, câteva mijloace de transport care nu se pretează electrificării. Acestea sunt:
Pentru acestea exista soluția de a produce ceea ce numim în engleza ”electrofuels”, traduși ca ”electrocombustibili”.
Electrocombustibilii pot fi foarte similari cu benzina, motorina sau kerosenul din aviație și pot fi folosiți în aceleași motoare cu ardere internă ca acelea pe care le folosim astăzi.
Hidrogenul este produs de electrolizor, ce folosește energie electrică, iar carbonul poate proveni din biomasă (care conține atât carbon cât și hidrogen) sau sisteme de captare a carbonului. Carbonul este hidrogenat și apoi pus într-o sinteză chimică pentru a produce combustibilul dorit.
Combinate cu soluții de stocare a hidrogenului, electrolizorii pot folosi energie regenerabilă intermitentă pentru a o stoca de această dată în forma combustibililor lichizi sau gazoși (soluții considerate mai ieftine decât stocarea în baterii), de unde vine și termenul ”Power-to-X”, litera ”X” reprezentând multitudinea de combustibili care pot fi produși.
În general, orice tip de combustibil poate fi produs pe aceasta cale, dar cei mai interesanți sunt metanolul, metanul dar și motorină, benzina sau kerosenul.
Amoniacul devine foarte interesant pentru sectorul transporturilor, putând fi folosit atât în sectorul maritim cât și cel de aviație, necesitând hidrogen și, în acest caz, azot, care poate fi captat din aer.
După măsurile din sectorul termic și al transportului, mai rămân sectorul industrial și centralele de producere a curentului electric și cogenerare ce încă folosesc combustibili fosili. Acest pas este totuși și cel mai dificil, deși până aici aproximativ 85% din sistemul energetic folosește energie regenerabilă.
Centralele de producere a energiei electrice – mult reduse ca număr – sunt necesare pentru a echilibra sistemul energetic în perioade când energia produsă de regenerabile este insuficientă. O condiție pentru acestea este sa fie flexibile, să poate fi oprite și pornite des sau operate la capacitate redusă.
Combustibilii pentru aceste centrale pot proveni din surse ca biogazul sau gaze de sinteză, combustibili regenerabili de o calitate mai scăzută decât electrocombustibilii și implicit cu un preț mai redus, dar pretabili pentru acest scop.
Pentru industrie, soluțiile sunt diversificate, de la electrificare, la hidrogen, biogaz sau electrometan, în funcție de procesele industriale. Nu toate sunt pretabile electrificării, pentru unele fiind nevoie de combustibili lichizi sau gazoși. Aceasta face acest pas cel mai dificil, din cauza necesităților diferite ale industriei și a soluțiilor diverse.
În urma acestor pași, un sistem energetic poate deveni regenerabil utilizând atât surse intermitente, cât și flexibile, ca biomasa.
Toți acești pași pot contribui semnificativ la reducerea emisiilor de carbon conform ambițiilor Uniunii Europene și sunt esențiali pentru a ajunge la un sistem 100% regenerabil la un cost cat mai redus.
Deoarece investițiile în infrastructură energetică au durată lungă de viață, deciziile și tehnologiile implementate astăzi ne vor însoți în următorii 30-50 ani.
Citește și: